
AD-A249 419

RL-TR-91 -274, Vol Vb (of five)
Final Technical Report
November 1991

PENELOPE: AN ADA VERIFICATION
ENVIRONMENT, Penelope User Guide:
Guide to the Penelope Editor

ORA Corporation

1-%4APR 2 9 1992 '

Sponsored by
Strategic Defense Initiative Office

APPROVED FOR PUBLIC RELASE, DISTRIUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Strategic Defense Initiative Office or the U.S.
Government.

92-11270
Rome Laboratory

Air Force Systems Commana
Griffiss Air Force Base, NY 13441-5700

92 4 27 41!

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

Although this report references limited documents listed below, no limited
information has been extracted:

RL-TR-91-274, Vol Ilia, IlIb, IVa, and IVb, November 1991. Distribution
authorized to USGO agencies and their contractors; critical technology; Nov 91.

RL-TR-91-274, Vol Vb (of five) has been reviewed and is approved for
publication.

APPROVED:

'- JOHN C. FAUST
Project Engineer

FOR THE COMMANDER:

RAYMOND P. URTZ, JR.
Director
Command, Control and Communications Directorate

If your address has changed or if you wish to be removed fron the Rom1e Laborator\
mailing list, or if the addressee is no longer employed by your organization, please

notify RL(C3AB) Griffiss AFB NY 13441-5700. This will assist us in mintaining i
current mailing list.

Do not return copies of this report Lnless contractual obliga tions or notices on a
specific docunent require that it be returned.

PENELOPE: AN ADA VERIFICATION ENVIRONMENT,
Penelope User Guide: Guide to the

Penelope Editor

C. Douglas Harper

Contractor: ORA Corporation
Contract Number: F30602-86-C-007 I
Effective Date of Contract: 19 Aug 86
Contract Expiration Date: 30 Sep 89
Short Title of Work: PENELOPE: AN ADA VERI-

FICATION ENVIRONMENT, Penelope User Guide:
Guide to the Penelope Editor

Period of Work Covered: Aug 86 - Aug 89
Principal Investigator: Maureen Stillman

Phone: (607) 277-2020
RL Project Engineer: John C. Faust

Phone: (315) 330-3241

Approved for public release; distribution unlimited.

This research was supported by the Strategic Defense Initia-
tive Office of the Department of Defense and was monitored
by John C. Faust, RL/C3AB, Griffiss AFB 13441-5700, under
contract F30602-86-C-0071.

REPORT DOCUMENTATION PAGE FIBNpro 70-08

-ww am ng To. dm ruao~ wo orr wY ww~- dvo= -u~ do omm~ S"~ cormwt regoiinig 1-a bran owiet o an w~ aww t7

Div. t-~. S4IZn124. A,*guMVA 22-43=wotoeuoffic d Mvugurw't wBdg PamwvuuledPin704-019K, Wmw-qarDC 205M3

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 36 REPORT TYPE AND DATES COVERED

INovember 1991 Final -Aug 86 - Aug 89
4. TITLE AND SUBlTTE 5. FUNDING NUMBERS

PENELOPE: AN ADA VERIFICATION ENVIRONMENT, C - F30602-86-C-0071
Penelope User Guide: Guide to the Penelope Editor PE - 35167G/63223C

6. AUTOR($)PR - 1070/13413
C. Douglas Harper TA -02/0

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.PERFORMING ORGANIZATION

ORA Corporation REPORT NUMBER
301A Dates Drive
Ithaca NY 14850-13 13 ORA TR 17-9

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS (ES) 1o. SPONSORINGJMONIrORING
Strategic Defense Initiative AGENCY REPORT NUMBER
Office, Office of the Rome Laboratory (C3AB) RL-TR-91-274,
Secretary of Defense Griffiss AFB NY 13441-5700 Vol Vb (of five)
Wash DC 20301-7 100

11. SUPPLEMENTARY NOTES

RL Project Engineer: John C. Faust/C3AB(3 15) 330-3241

1 2a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13a ABSTRACT fMm- 2w wo~

We present an introduction to using the Penelope verification environment under X
windows (v.10). The user is led step by step through the verification of a simple program,
including the steps of invoking Penelope, editing a program, and using the commands in
Penelope.

14. SUBJECT TERMS iS NUBER OF PAGES
Ada, Larch, Larch/Ada, Formal Methods, Formal Specification,10
Program Verification, Predicate Transformers, Ada Verification i~ aPPICE CODE'

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED 1U NCr L A S S I TED r)1NCLASS;TFIFr) I
NSN 754001 *2905 Strwa F orm 290 rRev289

Pr .. OV ANSI Sta Z39.10
mftCI

Contents

1 Introduction

2 Operating system basics C

2.1 Logging into the Sun C

2.2 Starting X windows 8

2.3 Starting the editor 9

3 Terminating your session iC

4 Using the Editor 11

4.1 Demonstration: editing a simple subprogram 11

4.2 Input and Output 45

4.2.1 Output: writing files 45

4.2.2 Interlude: looking at your output 47

4.2.3 Input: reading in your files 47

4.3 Changing the file 48

4.3.1 Buffer selection 49

4.3.2 Error correction 53

4.3.3 Textual revision 60

5 Annotations 68

5.1 Making annotations

5.2 More on annotations 75

6 Verification Conditions 7S

7 Acknowledgements C

I Ao0es9on For

DT I T ,

1 !v , ' -- ., C o s
1/2

,\3 .A;afi sl/or
N Spe a1

A-- --,m s- , 4' lb -

A Commands :

A-1 Keystroke commands.............................21l

A.2 Command line commands..........................2C4

A.3 Mouse commands...............................2'-4

A.3.1 Left button............................. 0

A.3.2 Middle button........................... S

A.3.3 Right button........................... ni

A.4 Ernacs cognates................................915

B Glossary 9

3

List of Figures

1..1

2. 1.2

3 14

4. 15

.. 7

6

7...... 1

10 22

11 23
12 24

13 25

17 29

18 30

19 31

203

21 33

22 34

23 35

24 36

25 37

26 3

27 39

28 1

4

29 4 7

30 4 2
31. 43

32. 44

35. 54

36. 55

37. 56

38. 62

39 .)3

40. 4

41c

42 67

45. 71

46. 72

47 73

49. 75
50 70

50
51 7

52 9

53. 9

55. 9

555

1 Introduction

Penelope is a tool for writing verified Ada programs. With it, you can inter-
actively produce Ada code, annotate the code in the Larch/Ada annotation
language, and prove that the code correctly reflects its annotations.

To use the editor, you will need to know about:

" formal verification of programs [Gries 811;

* the Ada programming language [Ada 83];

" first-order logic [Kleene 67] and Larch/Ada [ORA 87a,ORA 87b,ORA 88].

Our approach to program verification is similar to Gries's. Because Ada is more
complex than Gries's small, Pascal-like language, there naturally are differences,
but they are outweighed by the similarities.

Larch/Ada is a straightforward first-order language used for annotating Ada. If
you are comfortable with proofs involving formulas like

(Vz)'.T 0 =, (3y)(y = lz))

you will be comfortable with Larch/Ada. Read the references, if you have not
already done so, then come back to this guide.

Penelope is a syntax-directed editor. You begin with a placeholder on your
screen for a compilation.unit, which you expand according to the rules in the
Ada reference manual. Each expansion leads you closer to a completed Ada
program. As you guide the editor through the choices available in the rules,
it generates the syntax. At the end, when you have expanded each identifier
placeholder by typing in the corresponding identifier, you have a syntactically
correct Ada compilation unit.

Almost all of this may be done by selecting items from menus with the mouse;
very little typing is required. For instance, when you select a BEGIN... END con-
struct, the 'BEGIN' and 'END' are generated for you, and a statement placeholder
is generated between then. (Among other things, this means that you can never
get a syntax error because of a missing 'END'.)

The editor is a UNIX (tin) application program designed to run under X win-
dows [Gettys 86] on a Sun work station. Its inputs are from the keyboard, the
mouse, and from files edited earlier. Its outputs are to the screen and to files of
your choice.

Because of the versatility of the X window system, I will assume that your Sun
is configured exactly as are ours at Odyssey; otherwise, this guide would have

16

to be too general to contain any specifics. So that this assumption is justified,
we will provide all the files you need to install the editor.

The goal of editing is to produce verified compilable Ada units. As you save
each verified unit in a file, it becomes available for two uses:

" Compilation. After you build up a good library of verified components,
you will be able to assemble a large number of different verified programs.

" Re-editing. You may change and replace a unit, or use parts of old units
in building a new one. (In the second case, you do not affect the originals.)

Penelope was created by use of the Synthesizer Generator (SG). Although this
guide is self-contained, you may want to refer to the Synthesizer Generator Ref-
erence Manual (Reps 871, it and this guide being somewhat complementary. You
will find the specifics of Penelope here, whereas you will find the general concepts
underlying all SG editors in the Reference Manual. All the commands of the
editor are standard SG commands: their descriptions in this guide are directed
toward our editor; a full abstract description of these commands, applicable in
any SG editor, is found in the SG Reference Manual.

It is also helpful, but not necessary, to be familiar with the emacs editor. Many
of the commands of the editor have the same functions as the corresponding
commands in emacs.

This guide is tutorial in nature. You should now sit down on a Sun work station
and turn to Section 2.

7

2 Operating system basics

2.1 Logging into the Sun

Sit down at your idle Sun workstation, which should be giving you an invitation
to log in, something like

Hi! rm nestor, and I'll be your computer today.

(Whatever your installation decides to make this initation say, it will include
the name of your Sun. Everywhere you see the name 'nestor' in this guide,
mentally replace it with the name of your Sun.)

Type

-C

That is, press the control key, and while ' olding it down, press 'c', then release
both keys. (The caret stands for 'control'. In the future, this notation will
be used with several other letters; e.g., 'AN'.) A few seconds will pass and you
will be prompted with

nestor login: I

At this point, enter

(your login name) (return)

That is, type in your login name and follow it with a carriage return. If you do
not know your login name, see your system administrator. After you enter your
login name, nestor will give you the prompt

Password: U
Enter

(your password) (return)

After a few seconds pass, you should get a banner of one or more lines telling
you that you have logged in.

2.2 Starting X windows

After the login banner is displayed, the Sun will ask you

run windows? jnxs] I

Enter

x (return)

mm e , mm m • Imllmllllllm mlm al | |m | 8

(for 'X windows'). You will see the screen go blank, and then you will see labels
and boxes being drawn. The important one for now is the one that will be
drawn last of all, in the lower left-hand corner. This box is an X window, the
first one you will use. After a few seconds, this window will contain the prompt

label window? [nestor:ttypO,n] i'

Notice that the block following the prompt is hollow, unlike all the blocks that
came before, which were solid. The solid blocks meant that the computer was
ready to accept your answers to the prompts; the hollow block means that it is
unready.

To make the block turn solid, use the mouse attached to your Sun. Slide the
mouse on the pad and notice that the large X on your screen slides around
as you do so. Move the X into the top of the X window, and two things will
happen. First of all, the X will turn into an arrow. (It will turn into an elongated
letter I if you move it down into the middle of the window. Either way will do.)
Second, the block will turn solid. You have selected the X window; it will accept
keyboard input. You should now see

label window? [nestor:ttypO,n] I
The window is asking you whether or not you want its banner strip labeled with
'nestor:ttypO', as opposed to 'nestor:O'. This is purely a matter of taste. If
you want the longer label, just hit the return key. If you do not, enter the letter
'n' (no return is needed). Let us say that you enter

n

The next prompt you get will be

nestor: 1 % I
This is the window's general prompt, meaning that it is ready to accept com-
mands. In particular it is ready for you to start up the editor.

2.3 Starting the editor

Enter

vcgen.X (return)

At first it will seem that nothing is happening, but then the editor will draw a
new window in the center of your screen, partly covering up your first window.
Use the mouse to move the arrow into the new window, then go to Section 4.

9

3 Terminating your session

Once you are done using Penelope, you can exit X windows and log out of the
Sun by using the X menu at the top and left of your screen. Place the mouse
arrow on nestor, press the left button and hold it down. A menu will pop up
with several entries on it. Still holding the left button down, move the mouse
arrow to the entry 'Exit'. When it is displayed in reverse video, release the left
button. The system will then terminate both X windows and your Sun session.

10

4 Using the Editor

4.1 Demonstration: editing a simple subprogram

This subsection demonstrates the use of the editor to produce a simple, unver-
ified Ada function, multiply. Verification conditions will be discussed later.
Verification itself is discussed in the Penelope Tutorial [Hird 89].

After you invoke the editor (see Section 2), you should get a new window,
the main edit window. The reverse video strip across the top containing the
label 'main' is the title bar. Below that is the command line (discussed in
Appendix A). Ignore both these for now. Also ignore for now the scroll bar
with its several arrows at the right of the window.

Below the command line is the largest pane in the window, the object pane, in
which the text of your program appears. At the moment, it should look like

Figure 1:

C<qwpi:aioa uit>

The reverse video field (as simulated above by text in an enclosing box) is your
currently selected buffer or selection, whose contents you are able to change.
What is in your text buffer now is the starting placeholder for editing your Ada
compilation unit. You could type in an entire compilation unit at this point,
but there is a better way.

At the bottom of the editor window is the help pane containing a menu listing

possible replacements for the placeholder.

Click on

func-body

with the left mouse button.

The mouse arrow will temporarily change shape to an hourglass (signifying that
some time will pass: it is busy). Then your window should change to look like
Figure 2 on the next page.

11

Figure 2:

--> I VCs NOT SlOW!

-- I TRAIT <identifier> IS
-- I XIOM1S:
-- EI D AXIONS;

-- I EID LE NAS;

FUNCTION <deignator>(<identifier> <identifier>) RETURN <identifier>
-- > GLOBAL 0;
--I WHERE * **
--I END WHERE;

VC Status: hidden
-- I []

IS

BEGIN

<stat ent>
B ID;

If your window does not come to look like Figure 2, chances are that your aim
with the mouse was off a bit. The simplest fix to explain right now is to kill the
editor and start over. Move the arrow out of the editor window back into the
main X window (the one from which you invoked the editor), and type
^C

This kills the editor. Enter

vcgen. (return)

to restart.

If your window does look like Figure 2, all is well. Ignore the warning about
VCs for now; they will be discussed in Section 6. Note that a lot of the Ada
has been generated for you, but that there are a number of placeholders to be
resolved before the whole thing is legal Ada. What you are seeing is a template
for an Ada function, whose "blanks" you will "fill in" as you go along, either
with text or with other, more specific, templates.

Note also that the lines

-- I TRAIT <identifier> IS
-- I AXIOS:
-- I END LIOMS;
-- ILBNA:
-- I END LEMMAS;

12

are in reverse video, indicating that the multiline field is the current selection.
We do not discuss Larch Traits here; what we want to talk about now is the
Ada code.

The first thing to do is to name the Ada function. To do this, click on the
placeholder

<designator>

after the keyword 'FUNCTION'. Your screen should change to look like the
next figure.

13

Figure 3:

-- > 1 VCs NOT SHOMl!

FUNCTION (<digator> (<identifier> : <identifier>) RETURN <identifier>

-> GLOBAL 0;

-I tER * * *
M-I VEND WER;

-- V IC Status: hidden
-- ! 0]

IS

BEGIN
<statment>

M ;

Notice that the Larch trait has disappeared. You can always get it back, but

do not worry about it now.

The current selection is for the function name. Enter

multiply (return)

After you hit the return key, your screen should change to look like the next
figure.

14

Figure 4:

-- > 1 VCs NOT SHOWS!

FuncrIoN mtipl (,identifir> (identi-fer>) RETURN <identifier>

-> GLOBAL 0;
-I WEM E * *

1END WERE;
-! VC Status: hidden
-- ! 0

IS

BEGIN

<statment>
END multiply;

Notice that the text buffer contains parentheses, two identifier placeholders, and
a colon, comprising the starting text for the function's formaLpart. This entire
field, instead of just the first '<identifier>', is your current text buffer

You have several options at this point.

" You could type in

,(return)

(that half-box stands for a blank space) to remove the field entirely. While
this option has to be present, since the Ada RM allows a function to have
no formaLpart, it is not what you want to do for this demonstration. For
now, just note that this is how to get entirely rid of the unwanted text in
a buffer.

" You could type in what is to be the entire formaLpart right now by entering

(m,n: integer)

(no (return)) and then selecting the

<identifier>

after 'RETURN', which would take you directly to Figure 12. There are two
main drawbacks to doing this. If you make a typing mistake, you will
have to get out of it by killing the editor. Also, you will not learn as much
about the editor by doing this as you will by doing things the long way.
Instead:

15

* Hit

(return)

to tell the editor to move to the next text buffer. Since you have not
finished expanding the formal-part to Ada code, it should come as no
surprise that the next text buffer is a sub-buffer of the current one.

16

Figure 5:

-- > 1 VCs NOT SHOWN!

FUNCTION multiplyl (idntiier> : <identiier> RETURN <identifier>

-> GLOBIL 0;
-I M W * * a*

-I END WHERE;
-! VC Status: hidden

-!0

IS

BEGIN
<statrent>

END multiply;

The text buffer now contains both of the identifier placeholders and the colon,
but not the parentheses; you axe building the formal-part as a list of one or more
parameter.specifications. What you see is a template for the first one in the list.
Again, you have options:

" You could type the entire specification without hitting (return):

m,n: integer

and instead click on

<identifier>

after the 'RETURN' on the same line. You would then be seeing a screen
like Figure 12.

You can always use the mouse'to select buffers, which not only gives you
the freedom to skip around in the program at will, but also often saves you
intermediate steps. In this case, it would save you from stepping through
Figures 6-11.

" Do it the long way this time. Hit

(return)

to select the sub-buffer for the first identifier.

17

Figure 6:

-- > 1 VCs NOT SHOWN!

FUNCTION multiply4 (identifier> : identifier>) RETURN <identifier>

-> GLOBAL 0;

E-I E V E;
-! VC Status: hidden
-- ! 0

IS

BEGIN
<statwent>

EM Amutiply;

The text buffer is for a list of parameters to the function, all of a type to be
named later. You have options.

(Recommended) Enter only the first parameter:

m (return)

and go to Figure 7.

* Enter both parameters at once:

m,n (return)

and go to Figure 8.

18

Figure 7:

-- > 1 VCs NOT SHOWl!

FUNCTION mutiply(m, <identir> : <identifier>) RETURN <identifier>

-> GLOBAL 0;
-I UEIE 0* 0

1END VRERE;
- VC Status: hidden

Is

BEGIN
<statement>

END multiply;

The text buffer is for for the next parameter in the parameter list, if any. Enter

n (return)

for the second parameter.

19

Figure 8:

--> 1 VCs NOT SHOV11

FUNCTION multiply(m, a, <1Adtiti.>I < idntifier>) RETURN (Cidentifier>

-> GLOBAL 0;
-I U fl* *

MIEN VMnE;
-!VC Status: hidden

is

BEGIN
<statment>

EIFD multiply;

Again, the text buffer is for the next parameter, if any. This time, there is not
one, so hit

(return)

20

Figure 9:

-- > 1 VCs NOT SHON!

FUNCTION multiply(u, n [~~cidontifier>) RETUU <identifier>

-> GLOBAL 0;

ENKD WHERE;
: VC Status: hidden

--, [

TS

BEGIN
<statment>

END mu.tiply;

Notice that now that you have ended this list of parameters and are concerned
with their typemark, the editor is smart enough to remove the comma from after
the In'. Notice also that the default mode mark 'IN' has been generated after
the colon, and is the content of the current buffer. The editor automatically
generates the defaults as you go, but you need not accept them. Once a default
value is displayed in a buffer, you may edit that buffer.

You have options.

" You could select the mode you want from the menu

in out in-out

by clicking with the mouse. You would want to do this only in the case
of a procedure, since all parameters to functions must have mode Ill.
(In a later version of the editor, the two sorts of subprogram formal-part
will be handled separately, and you will not have this spurious choice for
functions.)

" You could enter the mode as text.

* You could accept the default by selecting another buffer. This is what you
want to do, so hit

(return)

and see the next figure.

21

Figure 10:

-- 1 I VCS NOT SOV1:

FUNCTION multiply(m. n <identifier>D RETURN <identifier>

-> GLOBAL 0;
-I WENE * .

IEND WHERE;
-: VC Status: hidden

-!0

BEGIN
<statmeunt>

END multiply;

Notice that the 'IN' has disappeared. The editor will not leave Ada default
values explicitly displayed. The only time one shows up is when its buffer is
selected, enabling you to modify it if you so desire.

The text buffer is for the type-mark of this parameter.specification. Enter

integer (return)

to finish the specification.

22

Figure 11:

-- > 1 VCs NOT SHOWN!
FUNCTION vultiply(n, n : integer;

J(identifier> (identifier>) RETURN <identiJfier>

G-> LOBAL 0;
WHEURE *

SEND WHERE;
-- ! VC Status: hidden

-- , 0

Is

BEGIN

<statenent>
END multiply;

The Ada formalpart consists of one or more i-.iances of parameter.specification,
separated by semicolons. If you wanted another parameter-specification, you
would proceed just as you did for the first one, filling m the blanks as you went
along. You have, however, given all the parameters that multiply takes, so
skip over this buffer by clicking on the

<identifier>

after the 'RETURN'.

You could, if you wanted to take the long way, keep hitting (return) to wade
through all the optional buffers until you reached the next figure. You can
always move forward in editing by hitting (return), but it is the longest possible
way to do so.

Rule of thumb: use (return) when you want to select the very next bu,
use the mouse to select more distant buffers.

23

Figure 12:

-- > I VC* lOT SHO'!

FUNCTION uultiply(,, n integer) RETUR [<dtNiir]

> GLOBAL 0;
WIHERE * * *

! VC Status: hidden-- go [

Is

BEGIN
<statement>

E" uit iply;

Notice that the buffer of Figure 11 has completely disappeared. This is be-
cause the second parameter-specification was optional. By skipping over it, you
indicated that you did not want it. Enter

integer (return)

for the identifier.

24

Figure 13:

-- > 1 VCs NOT SHOWN!
FUNCTION uultiply(m, n integer) RETURN integer

-> GLOBAL 0;

-- V IC Status: hidden
--, 0

Is

BEGIN

<statement>
END multiply;

The multiline text buffer is for the entry/exit annotations of multiply, which
I will defer for now. Note that so far as Ada is concerned, the buffer contains
comments. This demonstration is concerned solely with Ada editing; a discus-
sion of editing annotations can be found below in Section 5. Skip over this
buffer by hitting

(return)

25

Figure 14:

-- > I ICs NOT SHOWN!
FUNCTION multiplyC.. a integer) RETURN integer

->GLOBAL 0;
-I flE * * 0
-IEND lUERE;

VC Stus: hdden

is

BEGIN
<Statement>

END multiply;

The multiline text buffer is for the proof of the VC for multiply. VCs are
discussed in Section 6. Skip over this buffer by hitting

(.return)

26

Figure 15:

-- I 1 VCs NOT SHOWN!
FUNCTION multiply(m, n : integer) RETURN integer

> LOBAL 0;
--I WHERE**

-- I END iHERE;
-! VC Status: hidden

IS

<basic declarative item>]

BEGIN
<statement>

END multiply;

Penelope has generated the placeholder

<basic declarative item>

for you. At this point, you will declare your local variables. Before you do so,
however, recall that there are two different kinds of declarative items, basic and
later. You should be aware, for instance, that the bodies of subprograms may
be developed only from later-declarative-item placeholders. For more detail, see
Chapter 3 (especially Section 3.9) of the Ada Reference Manual [Ada 83].

Click on menu item

object

to set up the template for an object declaration. This is the first case in which
you are selecting a more detailed template rather than filling in text, so you
may want to look carefully at the next figure.

27

Figure 16:

-- > I Cs NOT SHOWN!
! UICTI ,.-tiply(m. , ;.ntegex' !?U .Tt" integer

- G GLOBAL 0;
-I M 111 * *

KI ED WHERE;
-! VC Status: hidden
-1 0

Is

I <identifier> : <identifier> :-<exp>;

BEGIN

<statement>
END multiply;

The text buffer is for the identifierJist of the object.declaration, which you will
expand to an actual list of identifiers. Again, only the first identifier is required;
others are optional. Type

prod

(do not hit (return)). If you hit (return) now, your screen would look like
Figure 17 below, and you would have to hit (return) or click the mouse to skip
over the optional field to get the screen to look like Figure 18, which is what
you really want.

The shortcut to Figure 18 is to use the general method to keep from generat-
ing optional fields after the one you are editing. Enter the forward-sibling
command,

ESC-^l

Let me revise what I said earlier about moving to new buffers.

Rule of thumb: use (return) to move to the very next buffer, optional or
not (optionals will be generated); use ESC-iI to select the very next displayed
buffer (optionals will not be generated); use the mouse to move to any displayed
buffer.

28

Figure 17:

-- > I VCs NOT SHOVU!
FUNCTION multiply(m, n integer) RETURE integer

-> GLOBAL 0;
--I ERE* * *
--I KD WERE;

-! VC Status: hidden

-~0

Is

prod. <itir> : identifier> := <erp>;

BEGIN
<statement>

END multiply;

This is not what your screen will look like if you did the last step correctly. You

want the next figure.

If your screen does look like this, hit

(return)

to get it to look like the next figure.

29

Figure 18:

- I Wec NOT SHOW!
FUNCTION multiply(n, n :integer) RETURN integer

-)GLOBAL 0;
-IlRE 0 4
EN KD WHERE;

-I C Status: hidden
0~

is

prod -,<idetifier> Gx>

BEGIN
<Statement>

EID multiply;

Enter

integer (retur-n)

for the type-mrark.

30

Figure 19:

I- VCs NOT SHOW!
FUNCTION multiply(m, u integer) RETUN integer

-> GLOBIL 0i;

M END ERE;
-!VC Status: hidden

prod : integer:

BEGIN
<Statement>

EN ultiply;

This buffer includes both the ':=' and the placeholder '<exp>'. You may declare
an Ada object without initializing it: this buffer is selectable so that you can
blank out the initialization, if you wish.

In this case, you do want to initialize the object, so select the expression place-
holder by hitting

(return)

and turn to the next page.

31

Figure 20:

-- > Us INOT SHOVN!
FUNCTION multiply(m, n : integer) RETURN integer

-) GLOBAL 0;
-I IDE,* *

MI EN RWERE;
-! VC Status: hidden

Is

prod : integer :- F ;

BEGIN

<statement>
END multiply;

Type

0 (return)

and turn to the next figure.

32

Figure 21:

I- VCs NOT SHOWN!
FUNCTION uultiPly(m, n - integer) RETURN integer

-)GLOBAL 0;
WHRlE * * *

-IEND WHERE;
-VC Status: hidden
-!0

is
prod :integer := 0;

J<basic declarative item>1

BEGIN
<statement>

EN multiply;

Now use the same methods as before to get your screen to look like the following.

33

Figure 22:

-- > I VCs NOT SHOW!!
FUNCTION multiply(m, n : integer) RETURN integer

-> GLOBAL 0;

-I END WHERE;

-! VC Status: hidden
- 0

IS
prod integer :- 0;

ztemp integer := e;

BEGIN
<statement>

END multiply;

Type

M

for the initial value, but do not hit (return), which would uselessly generate
another '<basic declarative item>'; Instead, use the mouse to select the
buffer for

<statement>

and see Figure 23.

34

Figure 23:

-- > 1 VCs lOT SHOW!
FUNCTION aultiply(n. n integer) RETURN integer

-- GLOBAL 0;
--I "IRE * * *

MI END ERE;
-! VC Status: hidden
-: 0

Is
pr4 : integer : 0;
Etemp integer :z m;

BEGIN

[<statementl)

MN unt ipil.

Choose

while-loop

from the menu, and turn the page.

35

Figure 24:

-- 2 VC2 NOT SHOV!
FUNCTION multiply(,. n : integer) RETURN integer

-> GLOBAL 0;
-I HUE * * 0
-I WD VERE;

V-! C Status: hidden

IS

prod : integer := 0;
ztemp : integer z;

BEGIN

!VC Status: hidden

WTILE <exp> LOOP
-- JINIVARIIT <term>;
<statemnt>

END LOOP;
END iultiply;

The selection contains a warning from the editor that the verification condition
newly generated for the loop is not displayed. Since I am deferring VCs for now,
click on

<exp>

one line down, and turn the page.

36

Figure 25:

->2 VCs NOT SHOWN!
FUNCTION wultiply(a, n1 integer) RETURN integer

->GLOBAL 0;
-IWERE * 0 *

-IEND WERE;

-'VC Status: hidden

is
prod integer :0;
mtemp :integer m

BEGIN
-'VC Status: hidden

WHILE F<ez-P) Loop

-IINVARIANT = <term>;
<statemeut>

END LOOP;
END multiply;

Type

mtemp>O

(no (return))

and select the placeholder

<statement>

in the body of the loop. Ignore for now the invariant of the loop, which will be
discussed in Section 5. Turn to the next figure.

37

Figure 26:

-- > 2 VC8 NOT SHOWI!
FUNCTION multiply(m, n: integer) RETUUE integer

-> GLOBAL 0;
-- I WIE * a *
-- V KND WERE;

-: VC Status: hidden

Is
prod : integer -s 0;
mtemp integer :m;

BEGIN
-- S VC Status: hidden
-- ! [)
WHILE (mtemp>0) LOOP

-- IIVARIAIT a <term>;

<statMent>

END LOOP;

EMD multiply;

Select

assignment

from the menu, and turn the page.

38

Figure 27:

--> 2 VCs NOT SHOWI!
FUICTION multiply(m, n integer) RETURI integer

-- > GLOBAL 0;
--I *EflE * *

M-I ERE;
-- VC Status: hidden
--, 0]

Is
prod integer 0;

mtemp integer :m;

BEGIN
-- ! VC Status: hidden

WHILE (mtemp>O) LOOP

-- IIVARIANT = <term>;

(--me :-<erp>;

ENM LOOP;
END multiply;

Enter

prod (return)

Since there are no optionals after the identifier and before the '.-, hitting
(return) takes you right to '<exp>'. See the next figure.

39

Figure 28:

--) 2 VC8 NOT SHOWN!
FUICTION zultiply(m, a : integer) RETUI integer

-> GLOBAL 0;
-I WE.E* *

MiKI WHERE;
-- V C Status: hidden
-! 0

IS

prod : integer : 0;
atemp : integer : m;

BEGIN
-- V VC Status: hidden
-- ! 0]

WHILE (Mtemp>O) LOOP

-- IIVARIANT - <term>;

prod:47 P>;

MFD LOOP;
END multiply;

Enter

prod+n (return)

and turn the page.

40

Figure 29:

-- > 2 VCs NOT SHOWN!
FUNCTION multiply(m, n : integer) RETUR integer

-> GLOBAL 0;
-I WHERE * * e
-1 END bZE;

-! VC Status: hidden

-0- 0

Is
prod : integer :z 0;

mtemp : integer :m;

BEGIN

-- ! VC Status: hidden

WHILE (temp>0) LOOP
-- IINVAIIIT - <term>;
prod:-(prod+n);

< s t ataement >

END LOOP;
END mlt iply;

Notice that parentheses have been generated for you. The editor accepts both
parenthesized and unparenthesized input, and gives fully parenthesized output.

The body of the loop is formally a list with optionals, so hitting (return) gener-
ated another '<statement>' and selected it. Fill this placeholder with another
assignment statement, but try it a different way this time. Instead of selecting
from the menu, enter

mtemp:--mtemp-1; (return)

The syntax must be completely correct. If not, the editor will print 'syntax
error' on the command line. You will then either have to use the techniques
of Section 4.3.2, or kill and restart Penelope in the manner described in the
discussion of Figure 2.

Go to the next page.

41

Figure 30:

-- > 2 VCs NOT SHOWN!
FUNCTION stultiply(m, n : integer) RETURN integer

- GLOBLL 0;
-I WHERE * 0*e
-I END WHERE;
- V !C Status: hidden
-- !

IS

prod : integer : 0;
itemp : integer :m;

BEGIN
-- ! VC Status: hidden
-- ! []

WHILE (mtemp>O) LOOP
-- IIIVARIAT - <term>;
prod:-(proden);
mtezp :-(mteMp-1);

k e<tat ~ e t

END LOOP;
END imultiply;

You have completed the body of the loop. To move beyond it, hit

(return)

and turn the page.

A2

Figure 31:

->2 VCs NOT SHOVE!
FUNCTION nultiply(a, n :integer) DETUUX integer

-> LOBAL 0;

-tEND WHERE;
V- C Status: hidden

is
prod :integer :a 0;
atemp :integer :=m

BEGIN
V- C Status: hidden

-!0

WHILE (mtemp)0) LOOP

prod:m(prod+n);
Mteap:.(MteXp-l);

END LOOP;

END multiply;

You now may place a statement after the loop. Select

return

from the menu, and see the next page.

43

Figure 32:

--> 2 VCs NOT SHOW!
FUNCTION multiply(m, n integer) RETURN integer

-> GLOBAL 0;
-IVRED. * * *
I ND VERE;
! C Status: hidden
-!0

Is
prod : integer : 0;
mtemp : integer :m;

BEGIN
-- VC Statsa: hidden
-' Q
WHILE (mtemp>O) LOOP

-- IIKVARIAIT - <term>;
prod:i=(prod+n);
ztep:=(mtemp-1);

MD LOOP;

RETURN FED;>

MID multiply;

Type

prod

(no (return))

for the returned expression. Since this is the last Ada statement in the program,
you do not want to generate another placeholder by hitting (return). Instead,
hit

ESC--N

to avoid generating optionals and turn the page to see your completed, syntac-
tically correct Ada program.

44

Figure 33:

-- > 2 VCs NOT SHOWN!
FUNCION Multiply(m. n integer) RETURN integer

-> GLOBALL 0;

-1END WHREE;
V VC Status: hidden

Is
prod : integer : 0;

ztemp integer :m;

BEGIN
-- ! VC Status: hidden

WHILE (Mtemp>O) LOOP

-- IIFARIANT = <term>;
prod: (pod+n) ;
mtemp:-(m lup-1);

END LOOP;

RETURN OdM

END multiply;

To learn how to save your file, turn to Subsection 4.2.

4.2 Input and Output

4.2.1 Output: writing files

Let us continue the demonstration a bit further. Now that you have a completed
Ada compilation unit, you want to write it. The way to do this is to enter the
write-named-file command,
X^w

and wait for a new window to open. Notice that this window has

<lilenae>1

selected. You may choose any name you want, but for this demonstration, enter

multiply. text (return)

See that the next buffer has been selected:

45

s tructure

Down in the menu, you will see:

text structure

These represent the two formats available for output: 'text' is for ordinary
makes-sense-to-humans Ada; 'structure' is for the internal editor representation
of the file. Use the mouse to select

text

You are now ready to write the file. Click on the

Start

in the upper right-hand corner of the window to execute write-named-file.

When write-named-file is complete, you will be returned to the main edit
window, whose command line will contain the message

wrote file multiply.text

You will then have written an ASCII version of multiply, suitable for compiling.

To write a structure-format copy, enter
.X w

again, and note that the name field has the old value you typed:

Smultiply. text

You must change this so that it contains 'multiply. structure'. To do so, use
the delete-selection command,

^K

to remove the contents of the selected buffer and bring back the placeholder.
(This works in general. For more information, see Subsubsection 4.3.2.)

You now have

S<filename>

selected. Type

multiply. structure

and then select

Start

just as before. When you return to the main editor window, the editor will
inform you in the command line that you have written a structure-format version
of the file.

46

4.2.2 Interlude: looking at your output

Now that your files are written, leave the editor and have a look at them. You
already know the rude way to leave the editor: go to the X window from which
you started it and kill it. The polite way to leave the editor is by typing the
exit command,

To see the text file, enter

more multiply.text (return)

at the X window prompt. Note that the file is just as it should be, ready for
the compiler.

Now turn to Subsubsection 4.2.3 to learn how to present your files as input to
the editor.

4.2.3 Input: reading in your files

There are two ways to read files into the editor. The first is from the X window
prompt as you start the editor, and the second is from within the editor itself.
The first way allows you to edit a file that already exists; the second allows you
to read a file into a text buffer.

To edit a file that already exists, first be in an X window with a solid box
prompt. Then start the editor, just as before, but this time enter the name
of the file after the 'vcgen.X'. For instance, let us say that you want to edit
multiply. text. Enter

vcgen.X multiply.text (return)

and look at the screen. It looks just like Figure 33, except that the entire file
stands out in reverse video against the rest of the window, and the command
line at the top of the window says 'Syntax erroi in line 17'. Why?

The reason that you have a syntax error is that your input contains placeholders
in the Larch/Ada text. (Notice the error marker, an elongated letter 'I', situated
just inside the placeholder.) The editor will not accept placeholders anywhere
in text input, not even in Ada comments. Furthermore, you catnot select away
from the buffer with a syntax error: the editor makes you fix syntax errors
before you do any more editing.

You could go to Subsubsection 4.3.2, and learn the long, grubby way to fix this,
but this is not necessary. Instead, abandon this edit, and then edit the structure
file. Type

^X-C

47

to leave the editor, and then restart it with the structure file as input by typing

vcgen.X multiply.structure (return)

Your main edit window will come to look as it did a minute ago, but with a
different command line from the last time.

Placeholders in structure files are accepted: the command line tells you 'Read
multiply. structure' instead of 'Syntax error'; your window looks essentially
the same as Figure 33 (for a discussion of what to do about all that reverse
video, see Subsection 4.3). By writing and then re-editing structure files, you
may suspend and then resume editing whenever you like.

Rule of thumb: use structure files for intermediate versions; use text files for
the final, compiler-ready versions.

Now let us look at the other way to read files into the editor. Leave the editor
by typing
^XrC

Then bring up the editor without a filename argument. Enter

vcgen.X (return)

Things will look just like Figure 1 again. This time, though, do not use the
menu. Instead, en.er the read-file command,

Z-XR

A new window will open up, very much like the one above for writing. Type

multiply. structure

and click the

Start

box. This will replace the entire main window contents with the text represented
in the file multiply.structure. Your soreen will look just as it did after you typed
'vcgen.X multiply.structure'.

(Of course, you could have read multiply.text instead, but you still would have
been told 'Syntax error'.)

Do not leave the editor. The demonstration continues in Subsection 4.3.

(For the advanced aspects of reading and writing, you should see the Synthesizer
Generator Reference Manual [Reps 87].)

48

4.3 Changing the file

Here I treat three related topics: correcting syntax errors; revising syntactically
correct files; and selecting buffers. I consider the third topic together with the
first two because Penelope is a structure editor, not a text editor. To correct
syntax errors, you must know more than has yet been said about text buffers;
to revise a file, you must know which buffers to select for changing.

4.3.1 Buffer selection

I am assuming that you have the editor the way you left it in Subsection 4.2. If
you do not, you should get it that way by typing

vcgen.X multiply.structure (return)

to your X window prompt.

The buffer structure of the editor reflects the tree structure of the Ada (and
Larch/Ada) language(s). There is a master text buffer for the entire file. Every
other buffer for the file is a subtree of the master buffer. This explains why the
entire file is in reverse video: the entire compilation-unit buffer was replaced by
the action of the read-fibe, and the entire buffer was still selected afterwards.
The same thing happens when you type text into a buffer: the buffer is still
selected until you hit (return), use the mouse, or otherwise select another buffer.

As you already know, every placeholder has a corresponding buffer. Often when
that buffer is edited, other buffers are created, sub-buffers of the first. There
are more buffers in the editor than have been introduced so far. To see every
buffer in the file, repeatedly hit

(return)

Penelope will reveal all the buffers in the file in preorder, even the ones normally
hidden from view. It will also generate optionals as you go along, then suppress
them after you pass tiem by.

The first (return) causes Penelope to generate a Larch trait. The second (return)
selects the buffer for the name of the trait. The third generates an INTRODUCES
statement. The fourth selects the name of the function to be introduced. At the
twelfth (return), you have completed the traversal of the Larch trait subtree.
Since you have entered no text, Penelope supresses the display of the trait.

The twelfth (return) also generates

<compilation unit>

between the warning about missing VCs and the rest of the file. The next
(return) suppresses it, and selects the rest of the file. This pattern of generating
optionals before and after visible text continues all through the file.

49

When the end of the function is reached, a new

<compilation unit>

is generated after the function body. Hitting (return\ one last time will suppress
it, and take you full circle back to where you started, with the master buffer
selected.

Note that there were three buffers associated with

(mtemp>O)

in the WHILE statement: one for Lhe entire expression, parentheses and all; one
for the subexpression 'mtemp'; and one for the subexpression '0'. Selecting the
latter two would be easy: point to either and click. Select the entire expression
by clicking on either of the parentheses or on the '>'. This should make intu-
itive sense. They belong to the expression, but to neither subexpression. This
generalizes.

Rule of thumb: Clicking on a symbol in the file selects the buffer for the
smallest structure containing that symbol.

There is a consequence of this that would appear strange if you did not know
the rule of thumb. As you move down through the file, you will come to a screen
looking like the figure on the next page.

50

Figure 34:

-- > 2 VCa XOT S' 0a!

FUNCTION multiply(m , n, <identifier> : integer) DEMRJ integer

-> GLOBAL 0;
-I WHERE * * *
- M END WHERE;
-- VC Status: hidden
-- ,

IS

prod : integer : 0;

wtemp : integer :m;

BEGIA

-- ! VC Status: hidden

- 0
WHILE (mtemp>O) LOOP

-- IIVARIANT - <term>;
prod:-(prod+n) ;
intemp:(zteMp-1);

END LOOP;

RETUMN prod;

ID mltiply;

This time, instead of typing (return), use the mouse to select the 'integer' in
the formaLpart. You might expect the line to change to look like

FUNCTION multiply(m, n : ge) RETURN integer

but it does not. Instead, it comes to.look like

FUNCTION multiply(m, n : integer) RETURN integer

This is because the optional buffer for the '<identifier>' disappears as you
select away from it. The smallest structure containing the text 'integer' that
persists through the change effected by clicking is the entire function header
buffer. (The formal-part buffer does not count because the number of its sub-
buffers changes as you click.)

So far you have seen buffer selection by means of the mouse and the two com-
mands (return) and ESC-^N. While you can get to any buffer you want with

51

these, you probably would like to know some shortcuts. I will introduce two
more methods here. There are many other commands for moving around in
the file: Chapter 3 of the Synthesizer Generator Reference Manual [Reps 87] is
exhaustive.

To get to the master buffer for the file, use the beginning-of-file command,

ESC-<

To get to the last buffer in the file, use the end-of -file command,

ESC->

Now what if your file is so long that it cannot be displayed all at once on one
screen, and the buffer you want is not in sight? You can still move forward by
means of (return) or ESC-^N, and eventually get to it, if it is ahead of you. If
it is behind you, you can use the clumsy expedient of going to the beginning of
the file, and then moving forward. This will always work.

The direct way to select a previous buffer is by means of the backward-preorder
command

which has roughly the opposite effect from (return).

The scroll bar at the right edge of the main edit window enables more rapid
progress.

" Click on the upward arrow-and-rectangle in the upper right of your screen
to scroll to the top of the file.

" Click on the triple upward arrow to scroll up one screen display.

" Click on the double upward arrow to scroll up half a screen display.

" Click on the single upward arrow to scroll up one line.

" The downward arrows have the obvious corresponding uses.

Notice I said 'scroll', and not 'move'. Using the arrows does not change the
buffer selection, so you have not moved within the file; you have just changed
the display Once you change the display, however, you are free to select any
displayed buffer on the screen.

This should give you enough tools for rapidly selecting any buffer you want in
the file.

52

4.3.2 Error correction

The editor insists upon syntactically correct input. When you type text into a
buffer and try to select another buffer, the editor parses your input. If adding
your text to the compilation unit causes a syntax error, an error message is gen-
erated on the command line: 'syntax error'. A cursor will also be displayed,
marking the current position in the selected buffer. You must correct the error
in the selected buffer before doing anything else (except quitting). The editor
will not allow you to defer fixing it while you edit another buffer. The buffer
you edited remains selected until you fix the error in it or leave the editor. So
far as the editor is concerned, you have not finished text entry until the text is
syntactically correct.

In changing the buffer, You may move the cursor left or right, you may delete
characters, and you may enter new characters. These methods for text editing
work in any text buffer. I introduce them here, but you do not have to be
recovering from a syntax error to use them.

Let us consider examples. Invoke the editor without a filename argument: this
will be just a throw-away session. You dc not want to edit an old file, and you
will not want to save your file when you are done.

Get your screen to look like Figure 3, and select the

<des ignator>

placeholder with the mouse. Enter

funkyuname (return)

which is syntactically incorrect because of the embedded space. Notice the I-
beam cursor in the reverse video field, flagging the buffer in which the syntax
error occurs.

53

Figure 35:

-- > 1 VC NOT SHOW!

FUNCTION frnky naIe ((identifier> <identifier>) RETURN <identifier>

-> GLOBAL 0;
-1 WERE * *
-(END WERE;
- VC Status: hidden
-- '0[

Is

BEGIN
<Statement>

END ;

To recover from this error, enter the delete-selection command,
IK

(no (return)), which deletes the text in the current buffer, but leaves the buffer
selected. Your screen will look come to look like Figure 36 below.

54

Figure 36:

-- > V VCs NOT SHOWN!

FUNCTION I (<identifier> <identifier>) RETUIN <identifier>

-- > GLOBAL 0;
- VREE** e
-IEND WHERE;

-- ! VC Status: hidden
-- : EJ

IS

BEGIN
<statement>

ED ;

The buffer is empty. (That thin solid box is the cursor, superimposed on the
remains of the reverse-video field.) You may now enter text exactly as though
you had just selected the buffer. Type

funkyname (return)

leaving out the space and adding the (return). Your screen should come to look
like Figure 37 below.

55

Figure 37:

--> 1 VCs NOT SHOWN!

FUNCTION funky (identifier> :identifier) RETURN <identifier>

-- > GLOBAL 0;
-I WHERE* e ,*

-I END WHERE;
-- ! VC Status: hidden
-- 0 0

Is

BEGIN
<statement>

END funkyname;

Using ^K to empty the field for starting over is less brutal than restarting the
editor, but sometimes you want an even lighter touch. Let us look at some other
capabilities. Get your screen to look like Figure 35 again. This time, use the
mouse to click on the space between 'frnky' and 'name'. The line in question
should now look like this:

FUNCTION (< n identifier> :identifier)) RETURN <identifier)

If the cursor is to one side or the other, click again until it does look like the
above. To remove the space, use the delete-next-character command,

^D

You should have:

FUNCTION fuInm.[(<identifier : <identifier>) RETURN <identifier>

Enter

(return)

Your screen should look like Figure 37, just as before.

Select

funkyname

56

with the mouse. The line should now look like

FUNCTION fkname RETURN <identifier>

First notice that the formal-part is gone. You selected the entire optional field
and then selected away from it, telling the editor that you did not want it.

Notice also that no cursor is displayed. You need to have a cursor on the screen
for the following text editing commands to have effect, so select, say, the 'n' in
'funkyname' with the mouse and type a space,

U

to get:

FUNCTION fkyJmeRETURN <identifier>

Use the delete-previous-character command by hitting the delete key,

DEL

to get:

FUNCTION I I]RETUR1 <Cidentifier>

This may seem arcane, but at lease you have a displayed cursor. I will explain
why you have to do all this after you have had practice positioning the cursor.

Enter the beginning-of-line command,

^A

to get:

FUNCTION JfzyahRETURN <identifier>

Notice that the only change is in the position of the cursor.

Enter the end-of-line command,

-E

to get the line to look like:

FUNCTION RETURN <identifier>

57

Enter the left command,

B̂

('B' for 'back') to get:

FUNCTION j] RETURN <identifier>

Do it twice more to get:

FUNCTION RETURN <identifier>

Use the delete-next-character command,
^D

to remove the 'a' and get:

FUNCTION RETURN <identifier>

Use the erase-to-end-of-line command,

ESC-d

to remove everything, after the cursor:

FUNCTION RETURN <identifier>

Use the delete-previous-character command,

DEL

to remove the final 'n' and get:

FUNCTION RETURN <identifier>

Enter

^A

to get to the beginning again and use the right command

58

^F

('F' for 'forward') to get:

FUNCTIN f RETURN <identifier>

Do it twice more to get:

FUNCTION f RETURN <identifier>

Now use the erase-to-beginning-of -line command,

ESC-DEL

to remove everything before the cursor, and get:

FUNCTION J, RETURN <identifier>

You may intersperse text entry with any of these commands. For instance, the
outcome of now typing

^F e ^E

is:

FUNCTION Fkyj RETURN <identifier>

This is almost everything you need to know about the techniques available for
error correctS',i You should be aware, though, that you do not encounter
syntax errors merely from typing nnstaKes. htecall that the editor does not
accept placeholders in textual input. You will get one syntax error message for
each placeholder in a text input file; you can use -K to remove the offending
fields, or you can change them to whatever you like. The main thing is that
you must bring the input file into syntactic correctness before you can proceed
further.

Let us get back to this arcana about selecting a buffer, typing a space, and
then deleting it. When you select a buffer that already has text, no cursor
is displayed until you enter new text. This means that none of the cursor-
positioning commands will have effect until you do enter text. It may seem
obvious and hardly worth stating, but you cannot move a cursor around if it is

59

not there to be moved. If you forget this, though, the above dubious feature of
the editor will someday perplex and annoy you.

Let us look at an annoying example. Select away from

key

and then select it again with the mouse arrow on 'e'. No cursor appears; you
merely have:

FUNCTIONkey RETURN <identifier>

The editor knows that you are positioned at the 'e', but it is pot showing you
a cursor, and it will not let you change the position without a cursor showing.
That is why the following input:

-E strokes

which you want to use to produce:

FUNCTION kyroejRETURN <idextifier>

does not produce that effect. What you get instead is:

FUNCTION ktoejyRETURN <identifier)>

One more annoyance, then I will be done with this subsubsection and you can
exit the editor: you would better not use the backspace key (or its keystroke
alias, ^H) during text entry. It is not what you might expect: it is not the left
command; it is the backward-with-optionals command, and if you use it
instead of -B, you will be rudely disappointed when the editor selects a previous
buffer.

4.3.3 Textual revision

You will often wish to change portions of the program as you are editing it.
Sometimes these changes will be minor, sometimes they will extend over several
lines. By learning to exploit the buffer structure of the editor, you will find that
revision can be easy. The basic move is to select and then modify the smallest
buffer that contains the text to be changed.

The simplest way to modify a buffer is to use

60

-K

to delete the old contents, and then to enter the new text. You have seen this
above. All the techniques of Subsubsection 4.3.2 are available to you for purposes
of revision. An example will show you some aspects of the old techniques that
might not have occurred to you, and will serve to introduce some new techniques.

This example is just for fun. The Ada program you develop will not make a
great deal of sense, and you will not want to save it, but editing it will teach
you about revision. Start the editor up with input file multiply.structure so
that your screen looks like Figure 33 again (except that the whole file will be
selected). You know that you could change the assignment statement

mtemp:=(mtemp-1);

to

mtemp:=(mtemp-2);

by selecting the '1', using delete-selection and typing '2'. Be a bit more
ambitious. Select the entire loop by clicking on

LOOP

Your screen should now look just like Figure 33, selected buffer and all. Delete
the entire loop with

K̂

Your screen should come to look like Figure 38 below:

61

Figure 38:

I- VCs NOT SHOWN!
FUNCTION atultiply(m. n integer) RETURN iuteger

>) GLOBAL 0
-I VIM.E*
-I EN WHRM;

-,VC Status: hidden

prod :integer :0;
iutemp integer m

BEGIN

F<tat.eet>j

RETURN prod;
MN Multiply;

You can now edit the statement buffer. Select the menu item

it-then-else

so that your screen comes to look like Figure 39 below:

62

Figure 39:

-- > 1 VCs NOT SHOUl;
FUNCTION multiply(m, n : integer) RETURN integer

-> GLOBAL 0;
WHERNE . **

-- END WHERE;

- VC Status: hidden

IS

prod : integer : 0;
mtenmp integer m;

BEGIN

IF r<ep> THEN

<statement>

ELSE
<statement>

END IF;

RETURN prod;

END multiply;

Type

m>n

in the expression buffer, and edit the first statement buffer so that your screen
looks like Figure 40 below:

63

Figure 40:

->2 VCs NOT SHOW!
FUNCTION amtiply(m. a integer) RETURN integer

-)GLOBAL 0;
WERflE 0 * *

M ENDHERE;
-!VC Status: hidden
-!0

is
prod integer :0;
mtqmp integer m ;

BEGIN
IF (mn) THEN

-'VC Status: hidden

WHILE (ateup~n) LOOP
-133AIAN a <term>;

END LOOP;

ELSE
<statemnt>

EN IF;
RETURN prod;

EN malt iply;

Use the copy-to-clipped -ommand,

ESC-^W

to copy the selected buffer to the special CLIPPED buffer. Then select the
statement buffer and use the copy-from-clipped comnmand

ESC-^Y

to copy the CLIPPED buffer to the selected placeholder. Your screen should
now look like Figure 41 below:

64

Figure 41:

->2 VCs NOT SHOW!
FUNCTION multiply(st, a - integer) RETURN integer

->GLOBAL 0;
-IVIERE * * *
-IEND WHERE;
-!VC Status: hidden

is
prod :integer :0;
amp :integer :m;

BEGIN
IF (m>n) TE

-!VC Status: hidden

WHILE (at emp>n) LOOP
-- IINVARINT - <term>;
stemp:*(Stemp-1);

END LOOP;
ELSE

-'VC Status: hidden
-!0

WHIL.E CuteqW)n) LOOP
I133FAN.IMN a <term>;

xtep:-(utmp-1);
END LOOP;

END IF;
RETURN prod;

LND mltiply;

There are several commands similar to the above.

" The cut-to-clipped command, ^V, copies from the current selection to
CLIPPED, and deletes the selection.

" The paste-f rom-clipped command, -Y, copies from CLIPPED to the se-
lected placeholder, and deletes the contents of CLIPPED. This command'
like copy-from-clipped, is sensitive to the structure of the program. The
target buffer must be syntactically compatible with the original source of
the CLIPPED contents. You have seen that you can copy a loop-.statement
into a statement placeholder. However, you cannot copy

-IWHERE * * *
-IEND WHERE;

65

into a

<statement>

placeholder, for instance.

" The text-capture command (which has no keystroke form) offers a way
around the limitations above. It copies the current selection as text into
CLIPPED.

You must use either the mouse or the command line to invoke this com-
mand.

" The copy-text-from-clipped, ESC--T, copies the text previously cap-
tured in CLIPPED to the selected text buffer.

You should also exploit the menu in revision. The items insert-before and
insert-after are especially helpful, creating appropriate buffers in the body
of your program. In the second loop, select the statement

mtemp:=(mtemp-1);

and then the menu item

insert-before

to get your screen to look like Figure 42 below:

66

Figure 42:

--> 3 VCs NOT SHOJ1!
FUNCTION multiplym n: integer) RETURN integer

G) GLOBAL 0;
W-I HERE * * *

-IEND WHERE;
-- ! VC Status: hidden
-! 03

Is
prod integer :-0;
mtemp integer : m;

BEGIN
IF (mtemp>O) THEN

VC Status: hidden
-- 0
WHILE (mtemp>O) LOOP

--IINVIRINT = (term>;
prod:-(prod+n);
rte p:U(mtep-l);

END LOOP;
ELSE

-- ! VC Status: hidden
~~0

WHILE (tmp>0) LOOP
-- IIIVARLIT = <term>;
prod:B(prod+n);

S<stateen>
mtep:=(mtemp-1);

END LOOP;
END IF;
RETURN prod;

END multiply;

The selected buffer now contains both the old assignment statement and the
new statement placeholder. You will have to select the placeholder buffer in
order to edit it separately.

This concludes the discussion of revision.

67

5 Annotations

Making Larch/Ada annotations is very similar to entering Ada text. Some
annotations are entered into placeholders generated for you as optionals, such
as those between '-- I WHILE' and '- I END WHILE;'. Others, such as embedded
assertions, are entered into statement buffers as Ada comments. Changes and
revisions are carried out just as with Ada, except that you have some additional
capabilities.

5.1 Making annotations

Go back to the X window prompt, and type

vcgen.X multiply.structure (return)

to resume editing the function multiply. Click on the word 'WHERE' to get your
screen to look like Figure 43

68

Figure 43:

-- > 2 VCs NOT SHOWN!
FUNCTION zultiply(m, n : integer) RETURN integer

-- > GLOBAL 0;

-IEND WHERE;

-- , VC Status: hidden

Is
prod integer 0;
utemp : integer :m;

BEGIN
-- ! VC Status: hidden

WHILE (atemp>O) LOOP
-- vAIIRANT - <term>;
prod :-(prod+n);
=tmp:=(mteap-i);

END LOOP;
RETURN prod;

END malt iply;

Select the menu item

in

to bring up the template for an IN annotation, as shown in the next figure.

69

Figure 44:

-- > 2 VCs NOT SHOWN!
FUNCTION multiply(m, n : integer) RETUR integer

-- > GLOBhL 0;

-- I N <t.- ;m

-- I END WERE;
-- ' VC Status: hidden

Is
prod integer : 0;
mtemp integer :-m;

BEGIN
-- VC Status: hidden

HILE (mtep>O) LOOP
-- IIIVAIAXT - <term>;
prod: -(prod+z) ;
=tamp: (mtomp-1);

M LOOP;
RETURN prod;

END multiply;

Select the term placeholder and type (without (return))

m>=O

since the function computes the product correctly only under this condition.
Select the word 'WHERE' once more to get the menu for the Larch/Ada specifi-
cations.

70

Figure 45:

-- > 2 VCs lOT SHOWN!

FUICTION multiply(m, n : integer) RETURN integer
-- > GLOBAL 0;

-- I IN (m)0o1;
E-N D WHER;

-- VC Status: hidden

Is
prod : integer 0;
mtemp integer : m;

BEGIN

._ VC Status: hidden
-! 0
vis (Ntemp>O) LOOP

-- IIFVLRIART - <term>;
prod:z(prod~n);
inteup:=(mteup-1) ;

END LOOP;

RETURN prod;

ED multiply;

Select the menu item

return

to bring up the template for a RETURN annotation, as shown in the next figure.

71

Figure 46:

->2 VCs NOT SHOWN!
FUNCTION nutiply(n. n :integer) RETURN integer

->GLOBAL 0;
WHEREE

11 IN -m));

-IRETURN (<term)

END WHERE;
- VC Status: hidden

0-

is
prod integer :a 0;
mteup integer ;

BEGIN
-'VC Status: hidden

WHILE (stexp)O) LO3OP
-- JI IVAJLIANT = <term>;
prod-in(prodfrn);
ztemp:u(utemp-i);

END LOOP;
RETURN prod;

EN multiply;

Select the term placeholder and type (without (return))

m*n

to specify the value that the function is to compute. Select the ter-m placeholder
in the INVARIANT annotation, and turn to the next figure.

72

Figure 47:

->2 VCs NOT SHOWN!
FUNCTION ultiply(m, un integer) RETURN integer

->GLOBAL 0
-IWHERE

-- I Is WUO);
RETURN (aen);

-IEND WHERE;
-'VC Status: hidden

is
prod :integer 0;
mtemp integer z ;

BEGIN
-'VC Status: hidden

WIHLE (mtemp>0) L.OOP

-II[VABILIFTa

prod :(prodfra);
ateap:M(atemp-1);

END LOOP;
RETURN prod;

END multiply;

You may now enter the loop invariant. Select the menu item

and

to bring up the template for a logical conjunction.

73

Figure 48:

->2 VCs NOT SHOW
FUNCTION multiply~s. n :integer) RETURN integer

->GLOBAL 0;

Is mWuO);
RETURN (man);

-!VC Status: hidden

is
prod :integer :0;
atemp integer :m;

BEGIN
V' C Status: hidden

WHILE (tmp>O) LOOP

-- INARIART = tem AID <term>);

prod:w(prod~n);
ateup:W(Utemp-1);

END LOOP;
REURN prod;

END multiply;

Enter

mtewsp>=O in the first term placeholder. Select the second term buffer and enter

prod + mtemp*n = m*nESC-^N

in the second placeholder. (You do not want to generate a statement place-
holder.) The next figure is your completed, fully annotated Ada function
mult iply.

74

Figure 49:

--> 2 VCs NOT SHOWN!
FUNCTION multiply(m, n : integer) RETURN integer

-- > GLOBAL 0;

-I vms >,o
-1 IN W-0);

RETURN (men);
-- I E WHERE;

! VC Status: hidden

is
IS

prod integer : 0;
mtemp integer := m;

BEGIN
-- ! VC Status: hidden
-- ! 0]
WHILE (mtemp>O) LOOP

-- IIVARIANT a ((mtztp>O) AID ((prod+(mtempn))f(m*n)));

Iprod:w(prod+n);

atemp:inutemp-i);
EMD LOOP;
RETURN prod;
MN multiply;

Save the contents to files multiply.text and multiply.structure, if you like.

I discuss verification conditions in Section 6. For detailed information, see the
Penelope Tutorial [Hird 89].

5.2 More on annotations-

Larch/Ada annotations can be entered and revised in the same way that Ada
can be: you can select templates from the menu, you can enter and modify text
in buffers, you can delete selections, you can copy to, cut to, or capture text
in CLIPPED, you can paste, copy, or copy text from CLIPPED, you can insert
before and insert after, etc. The only things that bear further mention axe the
menu items that appear when you have selected a Larch/Ada term buffer.

0 simplify

Use this to reduce your term to a simpler, logically equivalent form, if
possible.

75

" (Developer's toolkit)

Ignore these items. They are used in system development.

- deskolemize

- conjunctify

- deconjunctify

- applyEquality

- simplifyOps

" true

Use this to produce the text 'true'.

* false

Use this to produce the text 'false'.

" not

Use this to produce the template

(NOT <terom>).

* and

Use this to produce the template

(<term> AND <term>).

* or

Use this to produce the template

(<term> OR <term>).

* implies

Use this to produce the template

(<term> -> <term>).

" forall

Use this to produce the template

FORALL <identifier>: :<term>.

* exists

Use this to produce the template

EXISTS <identifier>: :<term>.

76

" variable

Use this to produce the template

<identifier>.

" apply

Use this to produce the template for functional application,
<identifier> (<ters>).

" if

Use this to produce the template

(IF <term> THEN <term> ELSE <term>).

* conjoin

Use this to add a conjunct to any selected term. For instance, when the
selected buffer looks like

(x=17)

clicking on this item would produce the template

((x=17) AND <term>),

A subset of these items is available for sub-buffers of term buffers. A little
experimentation will reveal the pattern.

77

6 Verification Conditions

Your selected buffer contains the first warning about Vs (see the last part
of Section 5). A VC is a verification condition, a theorem you must prove in
verifying the Ada code. In the menu, you will see

show-ve

Selecting this causes the first hidden verification condition to be reveaied.

Do the same for the other VC, and your file will contain the text displayed on
the next page.

78

Figure 50:

FUNCTION multiply(m, n : integer) RETURN integer

-> GLOBAL 0;
-- I WHERE
-I IN (m>0);

RETURN (mcn);

- END WHERE;
-- ! VC Status: proved
-- BY synthesis of TRUE

is
prod : integer : 0;
mtemp integer : m;

BEGIN

- VC Status: cc not proved **

-- : 1. (Mtemp>=O)
-- 2. ((prod+(mtemp*))=(men))
-- ! >

(IF (Metap>O)
THEN (((mteip-1)>0O) LND (((prod+n)4.((mte"-l)))=(")))
ELSE (prod=(z*n)))

- < :proof>
WHILE (ztezp>O) LOOP

-- IIEVAILT a ((mteip>=O) MND ((prod+(temp*u))(-(nx)));
prod:=(prod');
teup:s(step-1);

END LOOP;
RETURN prod;

END multiply;

In VCs, the the numbered form lae are your hypotheses, from which you must
prove the formula following the double arrow ('>>'), the conclusion. When you

have done so, the status lines will say 'proved' instead of 'not proved'. You
will then have a verified function multiply, ready to save and compile.

The first VC is trivial: the edi~or automo;-ally proved it. If you coi'ld see it
before the automatic simplification and proof, it would look something like:

-- ! 1. (m>=O)
>> (m>=O)

The hypothesis is the IN condition of the function. The conclusion is the pre-
condition of the function body.

Informally speaking, the secona vC states that the loop invariant is preserved.

This gives the barest rudiments of VCs. For detailed information aLc'it proving
VCs, see the Penelope Tutorial[lird 89].

79

7 Acknowledgements

The software for Penelope is generated in part by the Synthesizer Generator
under license from Cornell University. We acknowledge Thomas Reps and Tim
Teitelbaum for their role in its development.

MI

A Commands

A.1 Keystroke commands

Here, for quick reference, is a list of all the commands described in this guide,
together with their official names, and a brief description. For a more com-
plete list of commands, see Appendix C of the Synthesizer Generator reference
Manual [Reps 87].

" (backspace)

backward-with-optionals

Select the previous buffer in the text (perhaps generating it as you go).

" (return)

forward-with-opt ionals

Select the next buffer in the text (perhaps generating it as you go).

sA

beginning-of-line

Move the cursor to the leftmost position of the selected text buffer.

* ^B

left

Move the cuisor one position to the left.

* 'C

exit

Terminate the editor. You will sometimes be given a chance to reconsider,
if you have not saved your changes. Do not rely on it.

^D

delete-next-character

Delete the character to the right of the cursor.

^E

end-of-line

Move the cursor to the rightmost position of the selected text buffer.

* 'F

right

Move the cursor one position to the right.

backward-with-opt ionals

Select the previous buffer in the text (perhaps generating it as you go).

execute-command

See Subsection A.2.

delete-selection

Remove the contents of the selected buffer. The buffer remains selected.

^M

forward-with-opt ionals

Select the next buffer in the text (perhaps generating it as you go).

forward-preorder

Select the next displayed buffer in the text. This may be a sub-buffer of
the current selection. No optional buffers are generated,

backward-preorder

Select the previous displayed buffer in the text. This may be a sub-buffer
of a larger previous buffer No optional buffers are generated.

^W

cut-to-clipped

Move the contents of the selected buffer to the CLIPPED buffer, deleting
the selection.

S^X^C

exit

Terminate the editor. You will sometimes be given a chance to reconsider,
if you have not saved your changes. Do not rely on it.

^ X^R

read-file

Read a file (to be named in the generated window) into the currently
selected buffer.

82

S-X^W

write-named-file

Write the screen contents into a file (to be named in the generated win-

dow).

past e-from-clipped

Move the contents of the CLIPPED buffer into the selected buffer, deleting

the contents of CLIPPED.

* DEL

delete-previous-character

Delete the character to the left of the cursor.

" ESC-DEL

erase-to-beginning-of-line

Delete all the characters to the left of the cursor.

* ESC-^N

forward-sibling

Select the next displayed buffer in the text that is not a sub-buffer of the
currently selected buffer. No optional buffer is ever generated.

" ESC--T
copy-text-from-clipped

Copy the text captured in the CLIPPED buffer into the selected buffer (it
must be a text buffer), saving the contents of CLIPPED for later use.

" ESC-^W

copy-to-clipped

Copy the contents of the selected buffer into the CLIPPED buffer, leaving
the contents of the selected buffer as is.

" ESC--Y

copy-from-clipped

Copy the contents of the CLIPPED buffer into the selected buffer, saving
the contents of CLIPPED for later use. The contents of CLIPPED must
be appropriate to the selected buffer.

* ESC-d

erase-to-end-of-line

Delete all the characters to the right of the cursor.

83

" ESC-<

begirming-of-file

Select the master buffer for the file.

" ESC->

end-of-file

Select the very last buffer in the text (no optional buffer is ever generated).

A.2 Command line commands

All the commands above may be typed on the command line, if you prefer. To

do this, use the execute-command command: hit either the tab key or

to get a command prompt on the command line. Then enter your command
name, followed by (return). You do not need to type the whole command name,

just an unambiguous prefix. For instance, you could enter

write-n (return)

instead of

write-named-f ile (return)

You may also answer the command prompt with any item currently in the menu,

instead of clicking on it with the mouse. So for instance, in Figure 1 above, you

could have typed

^I

and then

func-b (return)

instead of clicking on the menu item"f unc-body'.

A.3 Mouse commands

Moving the mouse moves the mouse arrow on the screen. Once you move the
arrow to your desired location, you have the use of the three buttons on top of

the mouse for selecting buffer, menu items or transformation, and for issuing

commands. If you like, you can use the mouse to do everything except enter text
into buffer,. Every command you have seen so far has its mouse counterpart.

84

A.3.1 Left button

As you have seen, this button is used for selecting buffers and menu items, as
well as for starting or aborting execution in command windows. In each case,
you click the mouse; that is, you point with the mouse arrow, press the left
button and then release it.

A.3.2 Middle button

You have seen that editor commands may be invoked with keystrokes such as
^K or by typing the command name (in this case 'delete-selection') on the
command line. You may also use the middle mouse button to invoke commands.
Which method you use is a matter of personal preference; the results of com-
mand execution are the same in any case. To do so, you drag the mouse; that is,
you press the middle button, bringing the drag menu into view, move the mouse
arrow to your desired selection, and then release the button. If you change your
mind and do not want any selection, move the arrow off the menu entirely, and
then release the button.

Let us look at specifics. Press and hold the middle button. Presently you will
see the following multipage menu on your screen:

85

Figure 51:

[Search
[File

[Windows
]" Cursor

Edit
apropos I

text-capture

undo
cut-to-clipped
copy-to-clipped

paste-from-clipped

copy-from-chpped
delete-selection
repeat-command
alternate-unparsing-toggle
alternate-unparsing-on

alternate-unparsing-off

set-parameters
dump-on
dump-off _-

break-to-debugger

Edit

I will discuss the other pages in a moment; for now, let us look at the top
page. The menu item for the command apropos (which I have not discussed
and will not), in reverse video, is the current selection. To invoke the command,
you would merely release the button. More likely, you would want to move
the arrow down, say putting 'delete-selection' in reverse video, and then
invoking by releasing the button. To avoid the nasty surprise of invoking the
wrong command, keep the button down until you have the command name you
want in reverse video.

Your screen will look like the following when you have moved the arrow to
'delete-selection':

86

Figure 52:

[Search
I File

F= Windows
[Cursor

Edit
apropos
text-capture
undo
cut-to-clipped
copy-to-clipped

paste-from-clipped

copy-from-c lipped

[delete-selection]

repeat-comnmand

altern ate-unparsingotoggle

alternate-unparsing-on

alternate-unparsing-off

set-parameters
dump-on
dump-off

break-to-debugger
Edit

Each page of the multipage menu has a label, indicating what sort of commands
are offered on it.

" The top page above is labeled 'Edit' since the commands offered on that
page have to do with text editing.

" The page labeled 'Cursor' has to do with moving the cursor from buffer
to buffer.

" The page labeled 'Windows' has to do with controlling the various windows
of the editor.

" The page labeled 'File' has to do with contr -1ling the input to and output
from the editor.

a The page labeled 'Search' has to do with searching (strangely enough).

87

To select a command from a page, you must first bring that page to the top of
the sheaf of pages. Do this by moving the mouse arrow to the label for that
page. For example, move the arrow to 'Windows' to get the menu to look like
the following:

88

Figure 53:

Search
File

Windows
split-current-window
delete-other-windows
delete-window
help-off

help-on
enlarge-help
shrink-help

Windows
Cursor

Edit

Notice that no command item is selected, which makes sense: you did not move
the arrow to a command, but to the label. Notice also that the pages you
skipped over are now in the sheaf atthe bottom left. They can be called back
by moving the arrow to the labels they have on the bottom.

To complete the discussion of the middle mouse button, here is an image of each
menu page:

89

Figure 54:

Edit
apropos
text-capture

undo
cut-to-clipped
copy-to-clipoed

paste-from-clipped

copy-from-clipped
delete-selection
repeat-command

alternate- u np arsilg-toggle

alternate- un parsing-on

alter nate-unparsing-off

set-parameters
dump-on

dump-off

break-to-debugger
Edit

90

Figure 55:

Cursor
ascend-to-parent

forward-preorder

iorward-sibling

forward-sibling-with-optionals

forward-with-optionals

backward-preorder

backward-sibling

backward-sibiing-with-optionals
backward-with-optionals

b eginning-of- file

end-of-file
selection-to-top

Cursor

Figure 56:

Window
spl. t-current-window

delete-other-windows
delete-window
help-off

help-on

enlarge-help

shrink-help

Window

92

Figure 57:

File
list-buffers
switch-to-buffer
new-buffer
read-file
visit-file
insert-file
write- curren t- file
write-named-file
write- modified- files
write-file-exit
write-selection-to-file
write-attribute
exit

File

9.3

Figure 58:

Search
search-forward
search-reverse

Search

Many more commands are offered in the multipage menu than this guide treats.
If you are curious about them, see the Synthesizer Generator Reference Manual
[Reps 87].

A.3.3 Right button

You may use the right button to drig down a menu of transformations, which
duplicates the menu at the bottom of the main edit window. For instance,
pressing and holding the right button when your screen looks like Figure 1
brings up the menu:

94

Figure 59:

Transforms

proc-deci

func-decl
proc-body
func-body
insert-before
insert-after

Transforms

with, as you see, 'proc-del' selected.

" To invoke the transformation, release the button.

" To select another transformaticn, move the arrow to the item for it.

" To leave the menu without invoking a transformation, move the arrow
away from the menu and then release the button.

Do not release the button until you have selected the transformation you want
or have moved the arrow away from the menu; otherwise, you will inadvertently
invoke whatever is selected.

A.4 Emacs cognates

Many of the SG commands correspond to equivalent emacs commands with the
same key bindings. Here is a partial list.

95

Key binding ernacs name SG name

-1 beginning-ct-line beginning-of -line
-Bbackspace left
Ddelete-character delete-previous-charactor

'Eend-of-line end-of -line
^Kkill-line delete-selection
^Pprevious-line backward-preorder

^I^c exit exit
'IH write write-named-file
ESC-< beginning-of-file beginning-of-file
ESC-< end-of-file end-of-file
ESC-W wipe-out copy-to-clipped
ESC-Y yank-back copy-from-clipped

96

B Glossary

chord

To press two or more keys at once.

click on

To place the mouse cursor on the target object, press and release the
appropriate mouse button. If no button is indicated, the left button is
assumed.

drag menu

A menu that is selected by pointing, and then holding down the appro-
priate mouse button (default is the left button). The menu items are
displayed so long as the menu is selected. To choose an item, you point
at it and then release the mouse button. To deselect the menu without
choosing an item, point away and then release the button.

point

To place the mouse cursor on the target object.

97

References

[Ada 83] The Ada Programming Language Reference Manual, US DoD, US
Government Printing Office, 1983, ANSI/MILSTD 1815A.

[Aho 721 A. Aho: .. Ullman, The Theory of Parsing, Translation and Com-

piiation, v. 1, Prentice-Hall, 1972.

[Gries 81] D. Gries, The Science of Programming, Springer-Verlag, 1981.

[Gettys 86] J. Gettys, R. Scheifler, "The X Window System", Transactions on
Graphics, to appear.

[Kleene 67] S. Kleene, Mathematical Logic, John Wiley and Sons, 1967.

[ORA 87a] Draft Larch/Ada Reference: Version 0.1, Odyssey Research Asso-
ciates, May 1987.

(ORA 87b] Revisions and Extensions to Larch/Ada: Phase I, Odyssey Re-
search Associates, November 1987.

[ORA 88] Revisions and Extensions to Larch/Ada: Phase lT, Odyssey Re-
search Associates, 1988.

[Hird 891 Geoffrey Hird, Penelope Tutorial, Odyssey Research Associates,
1989.

[Reps 87] T. Reps, T. Teitelbaum, The Synthesizer Generator Reference Man-
ual, Department of Computer Science, Cornell University, 1987.

98

MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C31) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C31 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibflity, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

